
A Multiprocess Eyring Model for Large Strain
Plastic Deformation

P. Olley, J. Sweeney

School of Engineering Design and Technology, IRC in Polymer Science and Technology, University of Bradford,
Bradford BD7 1DP, United Kingdom

Received 2 March 2010; accepted 11 June 2010
DOI 10.1002/app.32951
Published online 27 August 2010 in Wiley Online Library (wileyonlinelibrary.com).

ABSTRACT: A multiprocess Eyring model is developed
with a particular aim of predicting the localized instability
occurring in ‘‘necking’’ polymers when cold-drawn. Differ-
ences from using single and multiple Eyring processes are
examined using a published data-set for polypropylene
test pieces; it is shown that a four Eyring process model
can simultaneously fit both necking stretch ratio and draw
force data for uniaxial stretching, whereas with a single
process only one measurement could be fitted accurately.
The multi process Eyring model is shown to give signifi-
cantly more accurate predictions than a necking hyperelas-
tic model. The multiprocess model is assessed against the
same material undergoing a complex constant-width elon-
gation. It is shown that agreement is quantitatively good

for both drawing force and surface deformation, with
some minor differences in transverse force and surface
stretch. A pronounced intermittent stretching pattern that
is seen on the experimental test piece is replicated by the
multiprocess Eyring simulation, but is absent using the
hyperelastic model. A method is described to deform a
photograph of the original specimen according to a finite
element solution. The method is shown to give a clear in-
dication of the accuracy of the model in predicting final
form. VC 2010 Wiley Periodicals, Inc. J Appl Polym Sci 119: 2246–
2260, 2011
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INTRODUCTION

Many industrial processes involve deforming poly-
mers at high temperatures and high strains and take
the polymer into strongly nonlinear behavior. The
‘‘necking’’ mechanism, a localized instability exhib-
ited by many polymers when cold-drawn is a partic-
ularly challenging phenomenon for a constitutive
model and simulation to capture, because many
polymers exhibit a large ‘‘natural draw ratio’’ with-
out rupture. Many experimental results for stable
necking in polymers have been accounted for by a
simple molecular model which explains natural
draw ratios and prior-orientation effects in terms of
folds in the polymer crystalline regions.1 Develop-
ments from the semicrystalline approach are given
by Leonov.2 The necking process has been studied
using a range of hyperelastic models;3–5 the hypere-
lastic approach was shown to give good agreement
with final neck shape, but the details of drawing
force had significant discrepancies. The most signifi-
cant discrepancy was in the stretch ratio at which
yield occurred. In addition, in purely hyperelastic
models the physical phenomenon of irreversible de-

formation is not present, and that a simulated object
would revert to its original shape after stretching and
release. A range of plastic models have been used in
simulations of necking: elastic-plastic yield surface
approaches,6–8 an anisotropic Argon model,9 an
extended Eyring model,10 and a strain concentration
approach.11 The plastic model of interest in this work
is the Eyring model, extended to multiprocess form
with multiple Eyring processes operating in parallel,
since this is flexible, gives controllable rate depend-
ence, and promises a good replication of drawing
force details. The multiprocess Eyring model may be
regarded as a general purpose plastic method—it
does not attempt to model molecular and structural
details of a polymer, but it is a very flexible approach
and as will be shown a single parallel elastic process
can effectuate the strain-hardening process seen at
large strains in semicrystalline polymers.
Application of Eyring process plastic models has

been extensive including a wide range of applica-
tions in plastics and metals,12–14 with many other
applications, such as geological analysis (see for
example Ref. 15). The fundamental Eyring rate
model was developed for 3D and shown suitable for
application to polymers by Buckley and Jones.16 Par-
allel progress was made using the ‘‘nucleating’’ Ar-
gon model.17,18 It was shown by Sweeney et al.19

that a two process Eyring model gave a significantly
better fit to features in the large deformation of
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polyethylene at 100�C than did a single Eyring pro-
cess; this was implemented as a ‘‘user subroutine’’ in
the ABAQUS simulation package. The number of
processes required depends on the particular mate-
rial and the strain and temperature conditions. Con-
tinuing the work with ABAQUS and similar user
subroutines, Sweeney et al.20 showed that a model
including a single Eyring process was successful in
the prediction of the behavior of a blow-molding
grade of polypropylene that deformed uniformly to
high multiaxial strains at 135�C. With the same mod-
eling approach at room temperature and smaller,
though still substantial strain, Naz et al.21,22 modeled
the constitutive behavior of fracture specimens of
ultra-high molecular weight polyethylene, again
using a single Eyring process. To give a general capa-
bility, in this work the model is extended to a multi-
process Eyring model which allows multiple proc-
esses, or ‘‘modes,’’ to be superimposed to fit complex
deformational behavior; and is implemented in a fi-
nite element code. The multiprocess approach prom-
ises to be very flexible, and suitable for a wide range
of materials showing plastic behavior.

To implement the model a 3D finite element code
was developed, using a 3D corotational formulation
which is both relatively intuitive and simplifies the
action of keeping plastic strain objective under rigid
body rotation. The finite element solution method is
a Lagrangian-Eulerian method, using a similar mesh
and stress update scheme to one used for hyperelas-
tic solution described in Ref. 5. A published data set
of large strain rheological experiments is used4 This
data-set is broad enough for a quantitative assess-
ment of the constitutive model and method in one
geometry, and then for a challenging cross-test
against a different geometry and mode of extension.

EYRING CONSTITUTIVE MODEL

According to the Eyring model, the overall plastic
flow rate, _eP, is determined by a function

_eP ¼ A sinh VS roctð Þ exp VPpð Þ; (1)

which rises sharply when particular values of octa-
hedral stress and pressure are approached, giving
plastic yielding. A, VS, and VP are constants which
control the flow rate, roct is the octahedral shear
stress, and p is the hydrostatic pressure. Assuming
that the plastic flow obeys the Levy-Mises flow rule,
flow in the principal directions of stress is given by

_kPJ
kPJ

¼ _eP

roct
sJJ (2)

where kPJ is the plastic stretch in principal direction
J, and sJJ is the deviatoric stress in the same princi-
pal direction.19 The method provides a well-defined

mechanism for plastic flow, and promises to be very
suitable for implementation in a multiprocess Eyring
form, allowing control over ‘‘difficult’’ behavior such
as in necking exhibited by a number of polymer
materials.

Corotational formulation

The model can be generalized into an objective 3D
model by separating deformation into strain and
rotational components. The absolute deformation
gradient tensor F can be written in terms of a sym-
metrical strain tensor D and an orthogonal rotation
tensor R such that

F ¼ DR: (3)

The tensor R can be used to define the localized
rotation for a corotational coordinate system.23 This
can be effectuated by the rotation

D̂ ¼ RTDR (4)

where D̂ is the corotated strain tensor. Effectively
strain is rotated with rigid body rotation such that a
strain aligned along a given axis of D̂ aligns along
the same axis after a rigid body rotation.
The corotated strain tensor can be separated into a

elastic component D̂E and a plastic component D̂P

such that

D̂ ¼ D̂E D̂P: (5)

The change to corotational axes has the effect of
making it relatively easy to maintain objectivity of
plastic strain under material rotation; a plastic strain
which occurs along a given axis before or during
rotation, stays aligned (with the material) along the
same axis of D̂ after rotation. Considerable ‘‘book-
keeping’’ is saved by this operation. A reverse oper-
ation [eq. (11)] returns the corotated stresses to the
global (rectangular) axes.

Implementation of multiprocess Eyring model

The multiprocess Eyring model is outlined by Figure
1 with a number of Eyring processes and elastic net-
works in parallel. One process is purely elastic
which allows strain hardening to be accommodated.
All parallel processes feel a common strain, and
each process reacts according to its set parameters
and produces a stress—the addition of these stresses
gives the overall stress.
For each time step the change in corotated plastic

strain tensor at any given finite element’s Gauss
point, dD̂P, is sought. The total plastic deformation
for a given Eyring process, i, is then given by
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D̂Pi ¼ dD̂Pi D̂P0;i; (6)

where D̂P0;i is the plastic deformation tensor for the
process at the beginning of the step. When D̂Pi is
known, the elastic deformation gradient tensor for
that Eyring process, D̂Ei is calculated [using eq. (5)]
from:

D̂Ei ¼ D̂ D̂P
�1
i : (7)

The stress in the Eyring process can now be com-
puted. In the present case, the elastic stress model
used is the ‘‘neo-Hookean’’ where the strain energy
per unit volume for a given Eyring process is given
by

U ¼ Gi

2
I1 � 3ð Þ � Gi

2
ln I3ð Þ þ b

2
Gi ln I3ð Þð Þ2; (8)

where Gi is the shear modulus associated with Eyr-
ing mode i, and I1 and I3 are the first and third
invariants of the left Cauchy-Green deformation ten-
sor, B̂i, where B̂i ¼ D̂Ei D̂E

T
i . The second term in

eq. (8) serves to remove the ‘‘artefact’’ pressure at
zero strain, whilst the third term adds a pressure
equal to �2bGi ln I3ð Þ to resist volume changes.

When U is considered as a function of the invari-
ants of B̂i (I1, I2, and I3) the principal stresses are
given by

r123
JJ ¼ 2 k 2

J

qU
q I1

� 1

k2J

qU
q I2

þ I3
qU
q I3

" #
; (9)

where r123
JJ is the stress in principal direction J (for

any given Eyring mode); k2J is the square of the

stretch ratio in principal direction J, equal to Eigen-
value J of B̂i. The stresses for Eyring mode, i, in the
principal directions, r123

i can then be rotated back to
the corotational coordinate system

r̂i ¼ Mr123
i MT (10)

where M is a rotation matrix whose columns are the
Eigenvectors of B̂i, and r̂i is the stress in the coro-
tated coordinate system.
The multiprocess Eyring model comprises a neo-

Hookean network [eq. (8)] and a number of Eyring
networks in parallel, such that each network experi-
ences the same absolute deformation, the stresses of
these networks add to give the overall stress. The
total Cauchy stress in the global (rectangular) coor-
dinate system, Xxyz, is now obtained from the sum-
mation of all Eyring modes (and the neo-Hookean
mode) rotated back from the corotational to the
global frame of reference:

Xxyz ¼
X

R r̂iR
T: (11)

Determining the plastic strain

To determine the elastic strain, the plastic strain
must be known. The increment in plastic strain over
the time step, dD̂Pi, must be found and combined
with the total plastic strain at the beginning of the
step, D̂P0i, to determine the plastic strain at the end
of the time step. To compute the plastic strain incre-
ment the absolute deformation gradient tensor, F is
split using a left polar decomposition according to
F ¼ DR [eq. (3)], where D is a symmetric stretch ten-
sor and R is a rotation tensor.24 The stretch tensor
can be computed from F using

D ¼ FFT
� �1

2: (12)

The rotation tensor is directly computed using
R ¼ D�1F. The corotated strain tensor, D̂, is then
obtained from D̂ ¼ RTDR [eq. (4)].
Each Eyring network is subject to the same coro-

tated stretch tensor D̂. For a given Eyring mode,
indicated by the index i, we have

D̂Pi ¼ dD̂Pi D̂P0i; (13)

where D̂P0i is the total plastic deformation at the be-
ginning of the step. dD̂Pi is arrived at by an iterative
process; denoting the iterations by the index, k, we
introduce a trial plastic deformation change over a
time step dD̂Pi;k, where the starting estimate for the
first iteration can be taken as the identity matrix I.

Figure 1 Schematic arrangement of multiprocess Eyring
model.
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This gives a trial total plastic deformation at itera-
tion k of the time step of

D̂Pi;k ¼ dD̂Pi;k D̂P0i: (14)

The trial elastic strain of that mode D̂Ei;k

� �
is then

computed [making use of eq. (7)] as

D̂Ei;k ¼ D̂ D̂Pi;k

� ��1
: (15)

The stress in the principal coordinate system, r123,
can now be evaluated by computing a Cauchy-
Green tensor B̂Ei;k ¼ D̂Ei;k D̂Ei;k

� �T
and proceeding as

given by eqs. (8) and (9).
From r123, the octahedral stress can now be com-

puted from

roct ¼ 1

3
s12311 � s12322

� �2þ s12311 � s12333

� �2
s12322 � s12333

� �2� �� �1
2

;

(16)

where s123 is a deviatoric stress in the principal
directions given by.

s123JJ ¼ r123
JJ � 1

3
trace r123

� �
(17)

For an Eyring process identified by index i
(neglecting flow due to hydrostatic pressure) the
plastic rate is

_ePi ¼ Ai sinh VSi roctð Þ : (18)

In the case that plastic deformation over the time
step is colinear with the current stress tensor, eq. (2)
gives

kPJ

��
tþDt¼ kPJ

��
t
exp

_ePisJJ
roct

Dt

� �
; (19)

allowing the stretches for principal directions J
¼ 1,2,3 to be computed over the time-step. This
allows the relative change in principal stretch ratios
to be calculated from

dkPJ ¼ kPJ

��
tþDt

�
kPJ

��
t
¼ exp

_ePisJJ
roct

Dt

� �
: (20)

Although in general deformations plastic deforma-
tion is not guaranteed to be colinear with current
stress, we use the expression

dkPJ ¼ exp
_ePisJJ
roct

Dt

� �
(21)

as it keeps plastic deformation increments along the
principal directions of the current stress, keeps the

determinant of the plastic strain tensor at unity, and
reduces to the colinear case for colinear stress and
plastic deformation.
The stretch changes, dkP, are then rotated back to

the corotational coordinate system of D̂Ei;k to give
the updated plastic strain increment for process i at
iteration k þ 1, dD̂Pi;kþ1, using

dD̂Pi;kþ1 ¼ Mk dkP MT
k ; (22)

where Mk is a rotation matrix whose columns are
the Eigenvectors of B̂Ei;k. From eq. (17) it is clear that
s12311 þ s12322 þ s12333 ¼ 0, use of eq. (21) thus guarantees
unity determinant in dkP.
It was found necessary to introduce relaxation

into the evolution of the plastic strain increment for
the iterations (k) within a time-step. To keep unity
determinant, the under-relaxation was accomplished
using application of the function:

dD̂0
Pi;kþ1 ¼

�
dD̂Pi;kþ1

�h�
dD̂Pi;k

�1�h
(23)

where y is a relaxation factor. A value of y ¼ 0.1
was used throughout this work.

Efficient computation of Eigenvalues,
Eigenvectors, and powers of tensors

Computing subunity powers and the Eigenvectors of
symmetrical 3 � 3 tensors has proven to be the
greatest part of computational cost for this model; in
view of this tests were carried out on a number of
published codes for QR, Jacobi and tridiagonaliza-
tion methods. Attention is drawn to a recent publica-
tion by Kopp25 which gives an efficient analytical
method for finding Eigenvalues and Eigenvectors of
symmetric 3 � 3 matrices. Our tests found this
method considerably faster than any other method
tried, and equally robust. These algorithms (to be
precise the ‘‘hybrid’’ code of Kopp available at
http://www.mpi-hd.mpg.de/�globes/3x3/) were
used for all Eigen computations throughout this
work. A method is available for computing powers
of tensors using Eigenvalues and Eigenvectors.24

FINITE ELEMENT SOLUTION METHOD

Stresses in the Eyring model are computed numeri-
cally, rather than in terms of displacements as for
the small strain linear stress model. Having the
Cauchy stress in the global frame of reference, Xxyz

(which is henceforth written as X for simpler nota-
tion), the method proceeds from Cauchy’s equation
of motion with inertia neglected:

0 ¼ r :Xþ f (24)
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We proceed to develop an implicit solution
method employing a notional small strain stiffness
matrix; this method is adapted from a method first
used for the solution of viscoelastic flows by Vir-
iyayuthakon and Caswell.26 To introduce an implicit
method, the force-balance of notional small-strain
stresses, given by r � G eGu þ BeBuð Þ, is subtracted
from each side of the equation. G is a shear modulus
comparable to the low-strain shear modulus of the
nonlinear constitutive model, and B is a bulk modu-
lus. eG and eB are the small-strain deviatoric and
spherical stress operators respectively [eG ¼ A, and
eB ¼ C, where Aij ¼ qui/qxj þ quj/qxi and Cis a di-
agonal matrix with entries Cii ¼ qui/qxi (summation
implied)]. An iterative process is introduced by sub-
tracting the known values at iteration k from the
RHS of the equation, and the unknown values at
iteration k þ 1 from the LHS of the equation; upon
convergence this is equal to subtracting the same
quantity from each side. This gives

�r � G eGukþ1 þ BeBukþ1ð Þ
¼ r � X� G eGuk � BeBukð Þ þ f ð25Þ

The standard finite element procedure of multipli-
cation by the interpolation functions wi, and integra-
tion over the problem domain leads to

Kukþ1 ¼ F; (26)

where

K ¼
Z
V

r � wi½ � G eG þ BeBð Þ dV; (27)

and

F ¼
Z

S

wi f dS �
Z
V

r � wi½ � X� G eGuk � BeBukð Þ dV:

(28)

For simulation purposes, it is convenient to set G
¼ xG0, where G0 is the small-strain shear modulus of
the constitutive model (equal to the sum of all Gi).
The parameter x is a relaxation parameter, a value
of 5 was found just sufficiently high to obtain con-
vergence for the problems studied. In view of the
choice of penalty pressure [in eq. (8)], an appropriate
choice for the bulk modulus, B, is B ¼ 2bG0, since
this gives a stiffness matrix of comparable ‘‘stiffness’’
to the ‘‘forces’’ due to the penalty pressure. If required
the pressure p can be evaluated using p ¼ �2bG0

ln(I3), where I3 is the third invariant of the Cauchy-
Green tensor [using eq. (8)]. This leads to

K0 ukþ1 ¼ F0; (29)

where

K0 ¼ G0
Z
V

r � wi½ � x eG þ 2beBð Þ dV; (30)

and

F0 ¼
Z
S

wi f dS

�
Z
V

r � wi½ � X� xG0 eGuk � 2bG0eBukð Þ dV: ð31Þ

Thus eq. (31) is evaluated using the latest stresses
and deformations at the start of each iteration, and
is input as a force vector into eq. (29), to give
updated displacements, ukþ1. Each time-step thus
follows an iterative procedure, whereby trial solu-
tion k þ 1 is computed using trial stresses and dis-
placements from solution k, until convergence. The
nodal positions of the mesh are updated after each
iteration according to

X0
kþ1 ¼ X0 þ ukþ1; (32)

where X0 is the undeformed mesh, and X
0
kþ1 is the

latest deformed mesh. Upon convergence, ukþ1 ¼ uk,
and a the notional small-strain stresses cancel, to
leave the solution one time step advanced.

IMPLEMENTATION AND SIMULATION
PROCEDURE

The Eyring process was implemented using eight-
noded ‘‘brick’’ finite elements with displacement
components at the nodes. Three-point Gaussian inte-
gration was used (i.e., 27 Gauss points per element).
The total stress was computed at each Gauss point
[i.e., the stress given by eq. (11)], and the system of
equations assembled according to eqs. (29)–(31). The
pressure penalty factor, b, needs to be as low as pos-
sible to prevent mesh failure without inhibiting (by
partial ‘‘mesh locking’’) the deformation induced by
the constitutive model. A value for the penalty fac-
tor, b, of 30 was needed to prevent mesh failure for
the uniaxial test specimen (reported later) with a
value of 10 being sufficient for the planar extension
test specimen. Pressure dependent slip rate was
omitted in all cases [setting Vp ¼ 0 in eq. (1)]. An
incremental load procedure was used such that
enforced stretching boundary conditions gave an av-
erage strain increase of around 2% per time step; the
time step was chosen to give the extension rate of
the process under consideration. Over each time
step, the iterative procedure was applied over a
number of iterations, k; in one whole iteration the
updated trial displacements and mesh position were
computed according to eqs. (29)–(32), followed by
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computation of the trial plastic deformation for each
Eyring mode, i [using eqs. (14)–(18) and (21)–(23)];
with the trial plastic deformation new trial Cauchy
stresses and mesh position could be calculated using
eqs. (7), (9), (10), and (32). This was iterated until
convergence criteria was met, in this work the crite-
ria used was Du/U < e, where Du is the largest iter-
ation-to-iteration change in any nodal displacement
component, U is a characteristic displacement, and e
is a ‘‘small’’ number—a value of 1 � 10�4 was used
in this work.

Uniaxial extension test specimen

The simulation was applied to a uniaxial extensional
problem for which published experimental data is
available.4 The polypropylene used was in sheet
form, manufactured by Tiszai Vegyi Kombinat, Hun-
gary and known as grade K-899. The tensile test pi-
ece is shown in Figure 2. The specimen with a 17
mm long narrow cross section was stretched at
150�C by a further 35 mm at a constant velocity,
with an initial stretch rate of 0.014 s�1 (0.24 mms�1).
The force required to stretch was recorded against
extension in Ref. 4. Initially a single Eyring process
was used, along with a parallel neo-Hookean pro-
cess to see if force/extension data could be fitted
accurately from a single Eyring mode. Preliminary
runs of the simulation were required to establish

Eyring constants; a value of 6 � 10�15 s�1 for A was
chosen as a base value as it gives an increase of 5%
in peak stretching force for a factor of 4 rise in
stretching rate as reported.4 A characteristic noted
through these preliminary runs is that small values
of Ai(� 10�12 or lower) were found to be needed for
necking to occur. An interpretation is that a small
value of A means that a large value of VS is needed
to give the correct peak stress; as VS sets the expo-
nential rate within the (exponentially based) sinh
function [eq. (1)], then any rise in stress gives a large
plastic flow rate, and local instability is encouraged.
The parameter values that were used are given in
Table I.
It is interesting to compare the plastic Eyring

model with a (purely elastic) necking hyperelastic
model used in Refs. 4 and 5. This model is a modifi-
cation of the Ball Model of Ball et al.3, and is defined
by the energy function:

U ¼ 1

2
NC I1 þ 1

2
NS

	
1þ gð Þ I1 þ 2gI2 þ 3g2

� �
1þ gI1 þ g2I2 þ g3

þ ln 1þ gI1 þ g2I2 þ g3
� �


; ð33Þ

where NC and NS are related to the density of cross-
links and sliplinks in the polymer, respectively, and
g is a parameter defining the extent of motion of the
sliplinks.4 NS is defined as

NS I1ð Þ ¼ NS0 �NS1
I1 � 2ð Þa þNS1 (34)

where NS0 is the initial value of NS, and NS1 is the
limiting value at large strains; a controls the rate of
change from the initial to limiting value. The param-
eters used were NC ¼ 0.33 MPa, NS0 ¼ 6.64 MPa,
NS1 ¼ 2.13 MPa, g ¼ 0.2, and a ¼ 2.0. For direct
comparison this model was implemented in the mul-
tiprocess Eyring code by three changes: (i) using
only one process; (ii) replacing the neo-Hookean
part of the energy function [eq. (8)] with eq. (33),
and (iii) setting the plastic flow controlling parame-
ter, A, to zero.
Figure 3 compares the experimentally obtained

nominal stress (stretching force/initial cross section)
with the corresponding results from simulation.
The stretch ratio is a nominal stretch ratio given by

Figure 2 Geometry of 1.6 mm thick plane test specimen.
All dimensions in mm.

TABLE I
Parameters Used for Single Eyring Mode Simulations

with ‘‘Small A1’’

Mode Gi (Pa) Ai (s
�1) Vs (Pa

�1)

Eyring mode i ¼ 1 9 � 106 6 � 10�15 12.7 � 10�6

Neo-Hookean 3 � 105 – –
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(L þ L0)/L0, where L is the extension, and L0 is the
original length of the narrow section (17 mm). It is
seen that the height of the peak is matched well by
both simulations, although only the Eyring model
matches the position of the experimental peak well.
The overall shape from the single process Eyring
model is similar to experiment, but suggests that
using multiple Eyring modes may improve capabil-
ity to fit the data. A much larger value of A1, 6 �
10�5 s�1, was able to gave a very good fit to the
stretching force data at 0.014 s�1, although the
change in peak stress with stretching rate was
greatly over-predicted. We refer to the two parame-
ter sets as ‘‘large A1’’ and ‘‘small A1.’’ The parame-
ters used for ‘‘large A1’’ are summarized in Table II.

Figure 4 compares the simulated nominal stress
using the Eyring model with both sets of parameters
at extension rates of 0.014 s�1, and 0.14 s�1. The
curve for large A1 at 0.014 s�1 is very close to experi-
mental data, the drop-off rate after the peak matches
the drop off rate from experiment. At the higher
stretch rate it is noticeable that the large A1 curve
shows most change due to rate, this is to be
expected due to increased rate dependency with
increasing value of parameter A, as shown by sev-
eral analyses (e.g., Ref. 19). Although the ‘‘large A1’’
simulation matches the data at the experimental rate
of 0.014 s�1, the increase in stress level with exten-

sion rate is approximately four times higher than
reported in Ref. 4. Another difference from experi-
ment is seen when the specimen deformation is
studied. Experimentally, the material readily ‘‘necks’’
under elongational stretching. Figure 5 shows the
front surface of the meshes at the end of stretching
for ‘‘small A1,’’ and ‘‘large A1’’ parameter sets. Neck-
ing is pronounced using the small A1 parameter set,
similar to experimental results, but is absent from

Figure 3 Comparison between experiment at an initial
stretch rate of 0.014 s�1 and simulations using a single
Eyring process, and using a necking hyperelastic model.

TABLE II
Parameters Used for Single Eyring Mode Simulations

with ‘‘Large A1’’

Mode Gi (Pa) Ai (s
�1) Vs (Pa

�1)

Eyring mode i ¼ 1 9 � 106 6 � 10�15 2.65 � 10�6

Neo-Hookean 3 � 105 – –

Figure 4 Simulation at two initial stretch rates using a
single process Eyring fit with ‘‘small’’ A1 (6 � 10�15 s�1)
and ‘‘large’’ A1 (6 � 10�5 s�1).

Figure 5 Comparison on predicted stretching using large
A1 (left) and small A1 (right).
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results with the large A1 parameter set; quantitative
comparisons are made later in this work. The situa-
tion was largely repeated at the higher stretch rates,
with more pronounced necking using the ‘‘small A1’’
parameter set, but again no necking using the ‘‘large
A1’’ parameter set.

The extent of permanent deformation from the
Eyring model was investigated by removing stretch-

ing forces after pulling. The simulation stretched the
sample at a rate of 0.014 s�1; after this phase a ‘hold-
ing’ phase was enforced in which the sample was
held in the final stretched position for a time equal
to total stretching time. After this followed an
‘‘unloading’’ phase in which the enforced stretch is
reduced at the same rate as it was applied. Reaction
force (due to the stretching boundary conditions)
was monitored during this time; when the reaction
force first reached below zero, the stretching bound-
ary conditions were removed completely and the
part allowed to settle into a final shape. Figure 6
shows the plot of stretching force against time dur-
ing this operation. Stress relaxation can be seen, dur-
ing the ‘holding’ time, to be a slow process after a
fast initial drop (since the stress rapidly drops out of
the high ‘‘exponential’’ rate of the Eyring process).
Negligible change in the mesh was observed after
the first few time steps following the removal of the
stretching boundary conditions. Figure 7 compares
the mesh after the end of initial stretching, and the
mesh after being released. After unloading a reduc-
tion of around 40% stretch is seen, though clearly
different cooling and ‘holding time’ sequences
would strongly affect this value. The result confirms
that the Eyring model gives a permanent plastic de-
formation in the test piece, this is in contrast to
results obtainable from the necking hyperelastic
model in which the mesh must return to its initial
shape on release.

Application of multimode Eyring process

As seen in Figure 4, a single Eyring process with a
large value of ‘‘A1’’ gave a good fit to experimental
force data at one rate, but gave negligible necking.
The smaller value of ‘‘A1’’ gave necking, and also
gave the correct experimental rise in peak stress
with stretching rate, but didn’t produce the overall

Figure 6 Simulated stretching force during the extension,
holding, and gradual releasing of the specimen.

Figure 7 Comparison of front face of mesh at the end of
the stretching phase (left) and after unloading and releas-
ing (right).

TABLE III
Parameters Used for Four Eyring Mode Simulations

Mode Gi (Pa) Ai (s
�1) Vs (Pa

�1)

Eyring mode i ¼ 1 11.0 � 106 6 � 10�15 1.88 � 10�5

Eyring mode i ¼ 2 1.8 � 106 6 � 10�15 5.6 � 10�5

Eyring mode i ¼ 3 4 � 105 6 � 10�15 1.2 � 10�4

Eyring mode i ¼ 4 1.5 � 105 6 � 10�15 5.8 � 10�5

Neo-Hookean 2.5 � 105 – –

TABLE IV
Parameters Used for Two Eyring Mode Simulations

Mode Gi (Pa) Ai (s
�1) Vs (Pa

�1)

Eyring mode i ¼ 1 9 � 106 6 � 10�15 1.35 � 10�15

Eyring mode i ¼ 2 3 � 106 6 � 10�15 7.5 � 10�5

Neo-Hookean 2.7 � 105 – –
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correct shape for stretching force. To see if force
could be fitted using several Eyring processes, and if
this fit could give a useful prediction of other experi-
mental necking data, multiple Eyring processes were
used with the value of A1 fixed at 6 � 10�15 s�1 to
match the known rate dependence. It was found
that four Eyring processes in parallel with a single
fixed neo-Hookean gave a good fit to the observed
stretching force. The parameters used are listed in
Table III. Parameters for a fit using two Eyring proc-
esses are given in Table IV.

The nominal stress from the simulation using four
Eyring modes is compared to the experimental data
in Figure 8. It is seen that the details of the experi-
mental data are well replicated, with an accurate ini-
tial rise rate, position of peak stress, and behavior af-
ter the peak. The two Eyring process model can be
seen to fit the experimental data better than the single
Eyring process model (Fig. 3), but substantially less
well than the four process model. The maximum dif-
ference using four Eyring processes is � 2%. This
demonstrates, so far, that a close fit to stretching force
data is possible with the multiprocess Eyring model.
The model’s predictive ability is now examined.

The measured centre line surface stretch is avail-
able4 and a quantitative comparison with the simula-
tion results for the two and four-process Eyring
models and also for the ‘‘necking’’ hyperelastic
model [eq. (33)] is shown in Figure 9. The overall
agreement from all simulations is good with the
four-mode Eyring and hyperelastic models giving a
peak stretch ratio at the centre of 5.2, comparing
with 4.9 from experiment. The two-mode Eyring
model gives a slightly higher peak stretch ratio of
5.4. These values are significant as they represent
the ‘‘natural draw ratios’’ of the constitutive models
and the physical material, respectively. The distance
from the centre at which necking develops is closely
matched by all models, with a slightly better match
to the rise rate from the Eyring models. The struc-
tural deformation occurring in the test piece simu-
lated by the four-process Eyring model is shown in
Figure 10; a distinct neck is predicted as expected.
The contribution to stress of each Eyring process

(in the four process model) can be gauged from
Figure 11 which shows the deviatoric stress from
each mode in the direction of stretching at an ele-
ment in the centre of the high stretch region. These
deviatoric stresses are compared with the experi-
mental apparent stress (which also includes the con-
tribution of pressure). It can be perceived how the
individual modes add to give approximately the
shape of experimental data.

Figure 8 Experimental nominal stress for the uniaxial test
specimen compared with simulation using 2 and 4 Eyring
processes.

Figure 9 Comparison of surface stretch ratio along the
specimen from experiment, 4 and 2 process Eyring mod-
els, and hyperelastic model.

Figure 10 Back plane of 3D mesh after stretching using 4
Eyring processes.
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Unlike the single mode Eyring model, a multi-
mode model is shown to capture both drawing force
details, and necking with good accuracy; four proc-
esses were needed for this data set. The rise in peak
stress with stretching rate is also captured by use of
the ‘‘Small A1’’ parameter set.

Planar test specimen

Results from a planar extension experiment using
the same material and temperature are available.4 To
be broadly useful, a constitutive model should work
for planar deformation using material constants
found from uniaxial tests; thus cross-comparing
against a planar experiment represents a critical test
for a constitutive model. In the planar experiment a
square sheet was stretched at a constant rate in one
direction, whilst applying a force in the transverse
direction such that a constant width was maintained.
Figure 12 shows the test specimen geometry, and
Figure 13 shows the test specimen, printed with a 5
mm grid of squares before extension. Figure 14
shows a specimen after being stretched to an overall
draw ratio of 2.2 at an initial extension rate, ė of
0.014 s�1. (defined by ė ¼ _L/L0 where _L is the con-
stant extension rate (mm/s) and L0 is the 130 mm
diameter of the planar deformation material). It can
be seen that the deformation is complex with inter-
mittent stretch: small stretch ratios between the areas
supported by a thicker section, and necking where
there is no support.

Stretching forces were compared. The experiment
was repeated several times with the upper and
lower limits given for nominal stress in both the
axial direction (direction of stretching) and the trans-
verse direction.4 The nominal stress is the total force
in a direction divided by the initial area of the thin-

ner section (130 mm � 0.8 mm for both). The simu-
lation results for both four-process Eyring and
Hyperelastic models are compared with the pub-
lished experimental results in Figure 15. The axial
stresses from both models match well in terms of
peak value, although only the Eyring model gives
the peak value at the correct stretch ratio. However
the Eyring simulation gives nominal stress below
experiment at stretch ratios above 1.4. The transverse
stress simulated using the Eyring model is always
within the upper and lower experimental limits; the
hyperelastic model again only reaches the correct
level above a stretch ratio of � 1.4. Considering the
major differences in geometry and testing machines

Figure 11 Deviatoric stress for each Eyring process in the
direction of bulk stretch indicating each process’s contribu-
tion to nominal stress.

Figure 12 Geometry of Biaxial test specimen. Thickness
is 1.6 mm with central circle machined to 0.8 mm
thickness.

Figure 13 Photograph of full undeformed specimen.
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of the planar and uniaxial tests, the comparison with
the four-process Eyring model may be considered
good with the parameter set fixed from only the uni-
axial stretching force tests. The hyperelastic model
does remarkably well at predicting the overall levels,
but key features such as the rise rate and stretch at
peak stress are only predicted well by the Eyring
model.

Figure 16 shows the back plane of the 3D mesh
used for simulation before and after deformation.
Overall shape is ‘‘similar’’ to the experimental defor-
mation, but is not obvious from this alone whether
the detailed deformation is well predicted. Figure 17
shows a photograph of 1=4 of the predeformed
specimen, and the same photograph numerically
deformed according to the finite element solution for
the multiprocess Eyring model; the numerical defor-
mation is performed using the method given in the
next section [summarized by eq. (37)]. The experi-
mental result shows variation in all four quadrants
with the upper right appearing most similar to sim-
ulation. The four process Eyring simulation and
experiment show great similarity. The large axial
stretch ratios between supports are close (measure-
ment gives around 5.2 by simulation compared with
5.4 by experiment), and a much reduced stretch in
the areas with supports transversely supporting
them. This reduction is more pronounced experi-
mentally than in simulation; experimental stretch
ratios are � 1.2 in the ‘‘supported’’ areas compared
with around 2.4 in simulation. It is clear that the
photograph deforming method is effective in identi-
fying full-field similarities and differences between
simulation and experiment. The overall comparison
of the constitutive model, when applied without
parameter change to a significantly different defor-
mation regime is seen to be good, although not per-

fect when stretch between the supports is consid-
ered. The two process Eyring model (parameter set
in Table IV) gave similar deformation to the four
process model against this problem, with similar
variation of stretch around the supports. The corre-
sponding result for the hyperelastic model is shown
in Figure 18. The stretching follows a different pat-
tern to experiment with necking being fairly con-
stant across supported and unsupported regions.
The hyperelastic model hasn’t captured the ‘‘inter-
mittent’’ pattern seen in experiment, and predicted
by the Eyring simulations. It is clear that much more
realistic predictions are available from the use of the
multiprocess Eyring model.

NUMERICALLY DEFORMING DIGITAL
PHOTOGRAPHS OF A TEST SPECIMEN

This section gives the method used for numerically
deforming a photograph of a specimen, taken before

Figure 14 Photograph of deformed specimen after stretching.

Figure 15 Comparison of experimental axial and trans-
verse stresses with simulation.
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deformation, according to the predictions of a finite
element solution.

Consider a digitized photograph of the unde-
formed specimen comprising many pixels, with a
given pixel (identified by index j) having an inten-
sity Pj. Consider that a finite element solution of the
geometry is also available, where X represents the
positions of the undeformed mesh, and X þ DX(X) is
the position of the mesh after deformation; DX(X) is
the displacement from position X given by the finite
element solution.

We require a deformed image Q, comprising pix-
els Qk such that:

Qk ¼
X
all i

PiW ik (35)

where Wik is a weight value for the mapping
between pixel i of the undeformed image, and pixel
k of the required image. To a first estimation the
weight could be unity if the position represented by
Pi(X) is in the area covered by pixel Qk after defor-
mation, and zero if it is outside the area of Qk. A
problem of directly implementing this is that there
would be some pixels in the deformed image Qk

that had contributions from several pixels Pi, and
some Qk that had none, giving a poor image quality
(the problem is similar to the well known problem
occurring in image rotation using ‘‘forward map-
ping,’’ but is much exacerbated by the large increase

of area in the stretched material). To reduce this
affect to acceptable levels a number of integration
points are introduced into each pixel Pi. A simple
integration scheme was used with equally weighted
integration points distributed on a regular n � n
grid within pixel Pi (as indicated in Fig. 19), each
integration point represents a (pixel) area of 1/n
� n, and thus is given that value as an integration
weight. This gives a much better quality deformed
image defined by:

Qk ¼
X
all i

X
all j

PiW ijk; (36)

which incorporates summation over each integration
point, j, within pixel Pi. Wijk now takes the value of
1/(n � n) if the original position of integration point
j in pixel i moves to the area covered by pixel Qk af-
ter deformation, and zero if it is outside the area of
Qk. Figure 19 represents the mapping of integration
points from a pixel Pi before deformation, to several
pixels in Q after deformation.
Using an intensity scale where 0 ¼ black and 1 ¼

white, an effect of the above algorithm is to darken
stretched areas, since pixels in the stretched areas
tend to be spread over greater area when deformed.
In the photographs of physical experiments, highly
stretched areas actually brighten, including (signifi-
cantly) the black grid lines etched on the test speci-
men. A matching thinning effect is achieved by

Figure 16 Back plane of 3D mesh before deformation (left) and after deformation (right).

Figure 17 Photograph showing 1=4 of biaxial specimen before stretching, and same photograph deformed according to
multiprocess Eyring solution.
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calculating the negative of Qk from the negative of
Pi, i.e.

Qk ¼
X
alli

X
allj

PiW ijk; (37)

where Pi ¼ 1 � Pi. This was used in the artificially
deformed images shown in the previous section,
using 144 integration points per pixel (i.e., a 12 � 12
integration point grid).

As the image processing is essentially a 2D process
it is perhaps better to use explicit (x, y) notation at
this point. To make the computation of Q faster, a 2D
grid was constructed from the originally flat plane of
the 3D mesh. In the current simulation this was done
by detecting those nodes at ‘‘z ¼ 0;’’ this corresponds
to the plane on which the grid was printed. The most
involved part of the computation was finding the ele-
ment and natural coordinates (r and s) corresponding
to the Cartesian coordinates (x and y) of a given inte-
gration point. This is necessary so that the displace-
ments at x and y(Dx(x,y) and Dy(x,y)) can be calcu-
lated from interpolation of nodal solution variables.
The first stage is to find those elements (usually one,
sometimes two) in which the minimum and maxi-

mum x and y values of its nodes enclose the (xj, yj)
position of integration point j. The elements natural
coordinates (denoted by r and s) corresponding to (xj,
yj) were then found using a few iterations of a New-
ton’s Approximation method given in Appendix. If
these (r,s) values are inside the normal range (typi-
cally within the bounds of 61) then that element is
the one containing the integration point.
Having the element that the point is in and natu-

ral coordinates r and s, the displacements at the
position of the integration point can be obtained by
standard (finite element) interpolation of solution
variables, and the coordinates that it moves to after
deformation can be determined; it is then straight-
forward to locate the corresponding pixel Qk in a
rectangular output image.

DISCUSSION AND CONCLUSIONS

The single process Eyring model was found capable
of giving necking behavior with ‘small’ values of the
plastic flow parameter ‘‘A.’’ With this small value of
A the change in peak stress with rate could be
matched, but the simulated pulling force followed a
different pattern to experiment. A much larger value

Figure 18 Photograph showing 1=4 of biaxial specimen before stretching, and same photograph deformed according to
hyperelastic simulation solution.

Figure 19 Mapping of pixel integration points from undeformed mesh and image (left) to deformed mesh and image
(right).
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of ‘‘A’’ matched the stretching forces very well at one
extension rate, but greatly over-predicted the rise in
peak stress with rate, and did not give necking. These
last two points appear to be closely linked, since high
local rates of extension are associated with necking,
and a disproportionate rise in stress will tend to in-
hibit the local stretching, and thus inhibit necking.
With the multiprocess formulation, all of nominal
stress, necking, and rate dependence could be
matched for the uniaxial tensile specimen. It is possi-
ble to criticise a ‘‘multimode’’ model as relying on a
relatively large number of adjustable parameters
(rather than being guided by specific structural mech-
anisms, which may give a good fit with fewer adjust-
able parameters). However the model is extremely
flexible, and should be capable of fitting a wide range
of polymeric materials with different constitutive
structures. The parameter set used was based upon a
fit to only the nominal stress measurement for the
uniaxial test specimen; the simulation then success-
fully predicted the stretch measurements along the
test specimen. On testing the same material model
and parameter set against the same material in a sig-
nificantly different geometry and extension regime, it
was able to predict the ‘‘intermittent’’ stretching na-
ture well with accurate stretch ratios in the highly
stretched areas and a good prediction of axial and
transverse drawing forces.

The importance of using as low a value for the
pressure penalty term (b) was underlined. The mini-
mum value which allowed the planar simulation to
reach the end of deformation without mesh failure
was 10 (8 gave failure); a value of b of 100 gave little
of the ‘‘intermittent’’ stretch behavior, and 300 gave
a roughly constant stretch ratio between pulling
ends showing none of the observed ‘intermittent’
stretch. The reason seems related to the degree of
‘‘mesh locking,’’ which increases with b; this restricts
how the simulation can follow the behavior indi-
cated by the constitutive model.

The multiprocess Eyring model gave much more
realistic results than the hyperelastic model: in
matching nominal stress values, in retaining the
plastic deformation after release, and in matching
deformation and drawing forces when transferred to
simulation of a significantly different geometry and
deformation. The multiprocess Eyring model does
not address the specific molecular and crystalline
properties within a material directly, but it is inher-
ently flexible, allows controllable rate dependence,
and should be capable of useful application to a
wide range of processes and materials involving
plasticity.

The method for numerically deforming digital
photographs/scans of a predeformed specimen by
the finite element solution was shown effective in
highlighting differences and similarities to experi-

ment. For the large stretches involved a 12 � 12
pixel integration scheme was used to give a smooth
output image without noticeable artefacts. The
method is very effective in revealing overall
strengths and weaknesses of the model in predicting
final form, and represents a powerful and challeng-
ing test method for large deformation validation.

APPENDIX: NEWTON’S APPROXIMATION
BASED METHOD TO LOCATE NATURAL
ELEMENT COORDINATES CORRESPONDING
TO A CARTESIAN POSITION (XJ, YJ)

Starting with a central estimation of the values of r
and s (both zero), a value of the actual Cartesian
coordinates (xe, ye) for this (r, s) pair is calculated
from standard finite element interpolation:

xe ¼
X

wmxm; ye ¼
X

wmym;

where wm are the element interpolation functions,
and xm are the nodal values of the element in ques-
tion. The difference from (xe, ye) gives the error in x
and y (dx and dy)

dx
dy

	 

¼ xj � xe

yj � ye

	 

:

New trial values of r and s can now be found from
adding the Newton’s Approximation corrections, dr
and ds, given by

dr
ds

	 

¼ J�T dx

dy

	 

;

where J is the standard finite element mapping Jaco-
bean for 2D given by

J ¼
@x

@r

@y

@r
@x

@s

@y

@s

2
64

3
75:

The procedure iterates using the updated (r, s) coor-
dinates, until the error in x and y is sufficiently
small.
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